DaMu-Analytics
Rekursion

How to: SQL rekursive Abfragen erstellen

Die Frage wie man in SQL rekursive Abfragen erstellen kann kommt zwar nicht besonders häufig vor. Aber vor kurzem hatte ich tatsächlich eine Projektanfrage, genau so etwas zu realisieren. Rekursive Abfragen sind dabei Abfragen die sich selbst wieder aufrufen. Was das genau ist, wozu das verwendet werden kann und ganz wichtig, wie das genau funktioniert werden wir in dem Artikel untersuchen.

Also für diesen Artikel werden wir die folgenden Punkte erklären.

  • Was bedeutet Rekursiv?
  • Wozu kann ich rekursive Funktionen oder Abfragen verwenden?
  • Wie kann ich in SQL eine Rekursive Abfrage erstellen?

Mehr erfahren

How to: Texte mit Python analysieren Part 3

Wir beschäftigen uns in diesem Artikel wieder mit den Trump Tweets aus 2019 wie schon in den vorherigen Artikeln. Die sind nun schon deutlich älter. Die gezeigten Prinzipien lassen sich aber auch auf ziemlich alle anderen Datensätze anwenden. Ziel ist es zu analysieren, was für Themen Cluster in den Tweets stattgefunden haben. Ich werde die aufbereiteten Texte mit einfachen statistischen Mitteln für einen Cluster Algorithmus „interpretierbar“ machen und mehrere unterschiedliche Algorithmen miteinander vergleichen.

Es ist nun schon etwas länger her, dass ich einen Blog Beitrag verfasst habe. Es ist halt doch nicht so viel Zeit wie ich gedacht habe, um sich nebenbei mit solchen Themen zu beschäftigen. Aber die Geduld soll belohnt werden. Darum werden wir die Texte nun versuchen zu Clustern und an dem Beispiel 3 spannende Cluster Algorithmen vergleichen. K-Means, DBSCAN und HDBSCAN. Vorab, es gibt nicht den einen perfekten Algorithmus der immer passt. Neben diesen drei Algorithmen gibt es noch viele weitere die ebenso verwendet werden können.

Mehr erfahren

Process Modelle mit Petri Nets erstellen Teil 2 … jetzt wirds ernst

Im ersten Beitrag habe ich erklärt was Conformance im Bereich Process Mining ist und was es uns bringen kann. Außerdem habe ich erläutert, dass es häufig mit sogenannten Petri Netzen erzeugt wird. Heute werde ich darauf eingehen aus was Petri netze bestehen und wie ich diese erzeuge. Das Ziel in dem konkreten Use Case ist es, diese Petri Netze für die Nutzung in dem Tool Celonis aufzubereiten. Mit anderen Tools kann das benötigte Ergebnis etwas anders aussehen aber das Prinzip bleibt das gleiche..

Vielleicht, bevor wir einsteigen. Mit welchen Tools kann ich Conformance Funktionen mithilfe von Python einsetzen?

  • Celonis: Über eine Python API kann eine Conformance Abfrage an das Celonis Tool übergeben werden, welche jede Aktivität in dem Prozess auf Konformität überprüft.
  • PM4PY: Open Source Framework direkt in Python vom Frauenhofer. Hier gibt es Funktionen die aus den einzelnen Bausteinen ein Petrinetz erzeugen können und damit auch im Rahmen von Process Mining eine Conformance Funktion bietet.

Folgende Punkte werden in diesem Artikel behandelt:

  • Woraus bestehen Petri Netze
  • Woraus bestehen in der Regel Prozess Modelle
  • Let’s Code – Transformieren des Prozess Modells in ein Petri Netz
  • Weiterer Ausblick

Mehr erfahren

Prozessmodelle mit Petri Nets abbilden

In Unternehmen gibt es eine Vielzahl von Prozessen. Diese werden häufig mit speziellen Programmen wie ARIS und Co. abgebildet. Dabei fehlt aber häufig eine Zusammenführung mit den tatsächlichen IST-Daten der Prozesse. Wie man diese Daten und Sichten zusammenführen kann möchte ich, da ich gerade auf der Arbeit genau solch eine Aufgabe vor mir habe, darüber einen kleinen Beitrag mit meinen aktuellen Erkenntnissen dazu schreiben.

Wir werden dabei auf Methoden im Rahmen des Process Minings eingehen. Was Process Mining ist habe ich bereits versucht in einem eigenen Beitrag zu erläutern. Siehe hier.

Was werde ich also explizit erläutern?

  • Unterschied Discovery zu Conformance
  • Was brauche ich für Conformance
  • Was sind Petrinets und wie sind diese aufgebaut?
  • Wie sieht der aktuelle Use Case für das aktuelle Projekt bei mir aus / Was für Herausforderungen gibt es?

Mehr erfahren

How to: Web Scraping Data mit Beautiful Soup

Eine der wichtigen Aufgaben der Data Science ist es erst einmal an Daten zu kommen die man analysieren kann. Häufig werden einem von Auftraggebern bereits bestehende Daten zur Verfügung gestellt. Es kann aber auch vorkommen, dass erst noch Daten erhoben werden müssen. Eine Möglichkeit wie Daten von Webseiten gesammelt werden können möchte ich euch im folgenden erläutern.

In diesem Beitrag werde ich etwas über das Web Scraping schreiben. Dabei handelt es sich um eine Methode mit der Daten aus den HTML Strukturen von Webseiten extrahiert werden. Vorab gibt es hier aber einige Dinge zu beachten.

  1. Wenn möglich nutzt API’s der Anbieter, da diese genau für die Sammlung von Daten vorgesehen sind
  2. Versichert euch, dass die Daten die ihr sammelt auch für eure Zwecke verwendet werden dürfen (ggf. Fragen)
  3.  Überlastet die Webseite des Anbieters nicht mit euren Anfragen. Gerade wenn man eine komplette Webseite durchsucht und z.B. Dateien runterlädt oder die Unterseiten durchsucht, dann können kleinere Webseiten schnell in die Knie gehen. Außerdem könnte bei zu vielen Datenabfragen in zu kurzer Zeit der Admin auf die Idee kommen, dass ihr ein bösartiger Angreifer seid und eure IP blocken.

Mehr erfahren

Projektergebnis: Datenanalyse von Telekommunikationsblogs

In diesem Beitrag möchte ich eine Analyse von Daten, die ich aus RSS Feeds von verschiedenen Telekommunikationsblogs  gesammelt habe vorstellen. Damit möchte ich eine Idee geben wie man Analytics Aufgaben angehen könnte.

In dem Rahmen möchte ich auch verschiedene Punkte bzw. Fragen aufgreifen die sich mir bei der Planung und Durchführung des Analytics-Projekt gestellt haben.

  • Was ist meine Fragestellung/Hypothese gewesen?
  • Wie kann ich hier an Daten kommen und warum habe ich mich für diese Methode entschieden?
  • Wie habe ich die Daten aufbereitet und analysiert?
  • Welche Erkenntnisse habe ich daraus abgeleitet?
  • Was habe ich für zukünftige Projekte daraus gelernt?

Mehr erfahren

Data Lake vs Data Warehouse|Damu-Analytics

Im Bereich der Datensammlung und -bereitstellung wird ein Begriff immer häufiger genannt, der Data Lake. Was ist aber dieser Data Lake und worin unterscheidet er sich von einem klassischen Dataware House? Diese Frage möchte ich gerne in diesem Artikel näher beleuchten, da die Technologie zunehmend die Basis von Advanced Analytics und Data Science bildet.

Der Data Lake. Ein großer See von Daten der über große Datenströme mit immer neuen Daten versorgt wird. Diese Metapher passt ziemlich gut. Aber die Frage die sich häufig stellt, ist was für Vorteile gegenüber einem Datawarehouse habe ich und wie ist ein Data Lake eigentlich aufgebaut? Außerdem wissen Unternehmen häufig nicht genau wie diese Datenmengen gewinnbringend eingesetzt werden können. Darum werden wir uns folgendes anschauen

  • Eine kurze Erklärung des Begriffs
  • Aufbau eines Data Lakes
  • Unterschiede eines Data Lakes vs Data Warehouses
  •  Einsatzmöglichkeiten

Mehr erfahren

Process Mining – einfach erklärt |Damu-Analytics

Process Mining, Data Mining, Text Mining – Die Data Analysten werden zu Minenarbeitern und keiner weiß mehr was das alles eigentlich bedeutet. In diesem Artikel möchte ich euch den Begriff Process Mining erläutern, da er in den letzten Jahren eine wachsende Bedeutung im Unternehmensumfeld erfahren hat und euch häufige Fehler die beim Einsatz gemacht werden beschreiben.

So was ist denn jetzt dieses Process Mining? Im Prinzip leitet es sich vom Begriff Data Mining ab und um Process Mining zu verstehen, sollte man den Begriff Data Mining verstehen. Also fangen wir doch genau dort einmal an. Data Mining setzt sich aus 2 Begriffen zusammen. Data = Daten und Mining = Schürfen. Daraus lässt sich schließen, dass man mit Data Mining versucht Daten zu schürfen also zu gewinnen. Wichtig ist dabei, dass es nicht darum geht Daten zu erschaffen oder zu erfassen, sondern Informationen und Wissen aus den bereits erfassten Daten zu gewinnen. Dabei werden vor allem Methoden angewandt mit denen Daten strukturiert und zusammengefügt werden. Mit verschiedenen Algorithmen, Machine Learning, Text Mining Algorithmen kann der Data Analyst/Scientist dann versuchen Muster und Abhängigkeiten in den Daten zu entdecken und so neue Erkenntnisse aus den Daten zu generieren. Im Verlauf des Datenaufbereitung Prozesses entsteht so eine Datenpipeline die alle Daten durchlaufen und am Ende stehen die Erkenntnisse aus den Daten aufbereitet zur Verfügung. Data Mining ist dabei nur ein Teil dieser Prozesskette, welcher die Muster in den Daten aufdecken soll. Mehr erfahren